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ABSTRACT
In this paper, we focus on one of the most challenging tasks
in temporal information retrieval: detection of a web page
publication date. The natural approach to this problem is
to find the publication date in the HTML body of a page.
However, there are two fundamental problems with this ap-
proach. First, not all web pages contain the publication
dates in their texts. Second, it is hard to distinguish the pub-
lication date among all the dates found in the page’s text.

The approach we suggest in this paper supplements meth-
ods of date extraction from the page’s text with novel link-
based methods of dating. Some of our link-based methods
are based on a probabilistic model of the Web graph struc-
ture evolution, which relies on the publication dates of web
pages as on its parameters. We use this model to estimate
the publication dates of web pages: based only on the link
structure currently observed, we perform a “reverse engi-
neering” to reveal the whole process of the Web’s evolution.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
Publication dates; web pages; link-based method; likelihood
optimization

1. INTRODUCTION
In recent years, time dimension has been gaining increas-

ing importance for search engines, leading to a new research
area known as temporal information retrieval [3]. In this
paper, we focus on one of its most challenging tasks: detec-
tion of a document publication date. Web page publication
dates constitute an extremely valuable piece of knowledge
for a variety of search tasks. For example, this informa-
tion is essential for computing features for recency-sensitive
ranking of web documents [4, 5]. Page publication dates
can also be used in crawling policies [15]: links found on re-
cently created pages usually lead to recently created pages
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with up-to-date content, therefore the corresponding pages
should be crawled in priority.

Unfortunately, the publication dates of a large share of
web pages cannot be easily and reliably determined. The
most common way to determine the publication date of a
web page is content-based, i.e., to find this date in the HTML
body of this page. For example, some specific categories of
web pages, like news articles, usually contain their publica-
tion dates within their content. Yet, even in this case, there
are several difficulties: such pages may contain several can-
didate dates to choose from, these dates can be written in
different formats and for different time zones, etc. Needless
to say, the content-based approaches cannot detect publi-
cation dates for web documents that do not contain any
text, e.g., images or videos. In this paper we suggest an
algorithm which estimates the dates of web pages regard-
less of the presence of the exact publication date in their
HTML bodies.

In some other cases, a web page’s publication date can be
considered equal to the date of the first crawl of that page.
However, due to resource constraints, not all web-sites are
re-crawled frequently enough to make it possible to detect
new pages immediately after their publication. In addition,
we may consider the scenario when a search engine plans to
start operating in a new country. Since that country has not
been considered as the search engine’s target market until
this moment, it is very unlikely that it has been investing
a lot of resources into crawling and re-crawling the pages
interesting mostly to the users of that country, therefore we
cannot count on the first crawl dates to recover the publi-
cation dates of most pages. Similar situation arises when a
search engine plans to expand its index in the same country
(e.g., by deeper crawls).

The algorithm we suggest in this paper combines content-
based methods of date extraction with novel link-based meth-
ods. We mostly focus on the publication date detection
for pages which are not likely to contain the correct pub-
lication date in their HTML bodies. For such pages, we
use the link structure in order to estimate their publication
dates. We propose a group of multi-step date propagation
methods, which iteratively estimate the dates of pages using
the already known dates of their neighbors. Our approach
generalizes and extends several one-step link-based methods
proposed in the literature [14, 16]. We also propose a the-
oretically grounded approach which is based on a realistic
model of the Web [10]. It was shown in [11] that the pop-
ularity of almost all new pages decays exponentially with
time. Based on this observation, a realistic model of link
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evolution was proposed in [10]. In this model, the publica-
tion dates of web pages are used to predict the evolution of
the Web link structure. Here we do the reverse operation,
i.e., we use this model to estimate the publication dates of
web pages. Given only the currently observed link structure,
we apply “reverse engineering” to reveal the whole process
of the Web’s evolution. Namely, we find such publication
dates which maximize the probability that the Web graph
observed in reality is produced by this model. To the best
of our knowledge, we are the first to propose a model-based
probabilistic method for document dating. To sum up, the
contributions of this paper are the following:

• We suggest an algorithm for publication date detec-
tion which combines content-based methods of date
extraction with link-based methods.
• As link-based methods, we propose a general approach

to date propagation as well as a more sophisticated
algorithm based on a realistic model of the Web.
• We suggest a method which allows us to reduce the

computational complexity of our algorithms. As a re-
sult, the proposed algorithms run in linear time.
• We also propose a novel data-driven parameter selec-

tion method which adapts the algorithms to each host
individually. The motivation behind this is that dif-
ferent parts of the Web may evolve by different rules,
therefore, we should adapt our methods and parame-
ters to these rules.

We perform the experiments on two different datasets:
one dataset consists of about 4M web pages located on 70
different hosts, another one is MemeTracker dataset [1].

The rest of the paper is organized as follows. In the next
section, we discuss different existing approaches to web doc-
uments’ dating. In Section 3, we present our approaches
and the model on which some of them are based. Section 4
describes the data used to analyze the performance of our
algorithm. The experimental results are presented in Sec-
tion 5. Finally, we conclude the paper and outline directions
for future research.

2. RELATED WORK
The problem of publication date detection was analyzed

in a variety of studies. In this section, we briefly describe
the state-of-the-art approaches.

Extraction of publication date. The most widely used
approaches to dating web documents are based on the recog-
nition of temporal expressions in their texts [2, 7]. However,
the problem of choosing the correct publication date from
among the recognized candidates, which is central to docu-
ment dating, is not discussed in these papers. A more com-
plete solution to content-based dating is suggested in [13].
Here all three necessary steps are made: date extraction,
normalization of candidate dates, choosing the correct pub-
lication date. However, this method can be applied only
to pages which contain the publication dates in their texts
or URLs.

Link-based methods. Link structure of a graph can also
be used in order to estimate publication dates. For example,
in [14] a link-based method was used to solve a different but
related problem: they estimate the last update time, i.e.,
the moment when the content of a page was updated, while
we are interested in the moment when the page was initially
created. The following assumption is used in [14]: connected
web resources tend to have similar update patterns. In order

to estimate a document’s Last-Modified value, the authors
consider several types of neighbors, like documents contain-
ing links to the given document or documents pointed to
by the given document. They observed a positive corre-
lation between a document’s Last-Modified value and the
Last-Modified average over its neighbors. The strongest cor-
relation occurs with a document’s out-links. We use these
methods as our baselines in this paper.

Both the publication date and the last modified date are
useful for a search engine. For some pages, like the main
pages of news sites, the last modified date shows whether
the news articles referred by them are up-to-date. On the
other hand, for the majority of web pages, their publica-
tion date is the date when their main content was created,
while the Last-Modified value often corresponds to some mi-
nor layout changes. For example, the main content of news
pages usually stays stable, while surrounding ads and dy-
namic links are constantly changing. Therefore, publication
dates are often used as features in web search ranking [4].

In [16] backlinks are used to estimate the publication date
of URI. Authors take the earliest timestamp out of the fol-
lowing: the first time someone shortened the URI, the first
time someone tweeted the URI, the first time it appeared in
a public web archive, etc. The method based on the same
principle (taking the earliest of the publication dates of the
pages linking the given one) we also use as our baseline.

In this paper, we generalize the notion of aggregation and
consider different functions for aggregating the information
over the neighbors of a page. We also generalize the notion
of propagation: in [14] and [16], only one-step propagation
is considered (i.e., only the nearest neighbors are used to
predict the date of a page), while we assume that the prop-
agation can be done in multiple steps.

Language models. Language models are also often ap-
plied to dating web documents [6, 8, 9]. Such models are
useful when there is no explicit publication date in the body
of a document. However, the problem is that the date detec-
tion granularity is too coarse for such approaches: their error
rates are often measured in years, decades or even centuries.

In this paper, we suggest a new link-based method which,
as any link-based method, has to be combined with a text-
based date extraction approach: the reliable candidate pub-
lication dates extracted from documents’ texts are used to
detect the publication dates of documents that have no re-
liable (or any) candidate dates found in their content.

3. ALGORITHM
3.1 General scheme

In this section, we describe our algorithm for publication
date detection. Obviously, at the beginning of the dating
process no dates are known. In this situation, only a text
(or metadata) based date extraction method can help to date
some documents. Further, we can use link-based methods in
order to approximate the publication dates of the rest of the
documents, for which the content-based method could not
determine their publication dates with sufficient certainty. It
is important to note that the first stage of the dating process
is unavoidable, since any link-based dating method requires
some reliable publication dates (“anchor” dates) to be fixed
for a fraction of documents, as it needs to be guided toward
some specific time period the correct publication dates of
the other documents most probably belong to. The general
description of our algorithm is the following.
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Stage 1: content-based extraction of anchor and
seed dates. As we discussed, the first stage of our algorithm
is to extract candidate dates from the URL and the HTML
body of each page and choose the most probable publication
date from among the candidates. Our content-based method
of dates extraction is described in Section 3.2. For some
pages it is possible to detect highly reliable anchor dates,
which will be fixed for the rest of the algorithm. For some
other pages, candidates dates can also be extracted, but
they are less reliable and their estimates can be improved at
Stage 3, such dates are called seed dates. For the rest of the
pages, content-based date extraction is simply impossible.

Stage 2: anchor and seed dates propagation. Ob-
viously, some pages may not have any dates in their texts.
Therefore, at the second stage of our algorithm, we choose
some approximations of dates for all such pages, i.e., for the
pages without the seed or anchor dates. These estimates can
be improved at Stage 3. We use and compare several date
propagation methods. The description of these methods is
given in Section 3.3. In our experiments, if some pages have
no dates even after the date propagation, then we set some
constant value for them.

Stage 3: likelihood optimization. Seed dates, propa-
gated dates, and constant dates together form initial dates
which can be improved at this stage by our likelihood opti-
mization method. Our method is based on the model of the
Web evolution, which is described in Section 3.4. We find
the dates which maximize the probability that the observed
graph is produced by this model. This stage is described in
Section 3.5.

Let us sum up the notation. Anchor dates are trusted
dates which are extracted from URLs or HTML bodies of
pages and they cannot be changed during the link-based dat-
ing process. Seed dates are not such reliable dates extracted
from the texts. Propagated dates are dates obtained as a re-
sult of the date propagation procedure. Constant dates are
set for all other pages.

3.2 Anchor and seed dates extraction
Our research focuses on link-based dating methods, and

such methods always work on the top of content-based ap-
proaches, though are not specific to any of them. In this
paper, we use a state-of-the-art content-based method to
extract dates. This method relies on several rules (regular
expressions) in order to extract dates. The rules are similar
to the ones described in [13], but they are adapted to Russian
language. Several problems analyzed in [13] do not occur in
our case: almost all pages are in one language, belong to
one time zone, and most dates have only one interpretation
(e.g., 03/04/05 usually means 3 April, 2005). In contrast
to [13], we can extract dates not only from the URL, title,
or snippet, but also from the HTML body of a page.

First, using our rules, we extract dates from the URL and
the HTML body of a page. Then, as in [13], we remove
apparently corrupted dates such as dates referring to a very
old time or some time in the future. Then, in order to choose
the best date, we look at where each candidate date was
found: in the document’s URL, title, main content, etc. We
have a larger number of page components than [13], since
we consider the entire page contents, not their summaries.
We utilize the segmentator currently used by Yandex, the
most popular search engine in Russia, which allows us to
split document into zones/locations, such as title and main
content of a document. We consider the following locations:

1. URL
2. Title
3. Just before main content
4. Just after main content
5. Main content of a document
6. All other locations

In Section 5, we analyze the reliability of dates found in
different parts of a document. Based on these experimental
results, we use the following method of choosing the anchor
date. If there is a date found in the URL of a document,
then we take this date. Otherwise, we take the date from
the title. If there is no such date, then we take the date
from before the main content of a document. If all three
locations contain no candidate dates, then this page has no
anchor date. The dates found at the other locations are less
reliable, but they can be used as seed dates. In Section 5,
we show that dates found after the main content are more
reliable than the dates found in the main content, while the
dates found in the main content are more reliable than the
dates found in other locations (category 6 above).

3.3 Date propagation
Several date propagation methods were proposed in [14]

and [16]. The idea of these approaches is to take the dates
of a web page’s immediate neighbors and use some function
of them in order to estimate the date of the page. In [14],
the authors propose estimating the last update time as the
average of the last update times over either the documents
containing links to the given document or the documents
outlinked by the given document. In [16], the earliest date
of the web pages containing links to a given page is used
as the estimate for its publication date. We generalize and
extend these approaches in two ways:

• We propose and compare various aggregation func-
tions;
• We compare two propagation schemes: one-step prop-

agation, as used in [14, 16], and multi-step propagation
that we propose in this paper.

Let us first define several aggregation functions we con-
sider in this paper. The three of them were already dis-
cussed: in-avg propagation takes the average over the dates
of the documents containing links to the selected document,
out-avg propagation takes the average over the dates of the
documents pointed to by the selected document, in-min
takes the minimum of the dates of the documents contain-
ing links to the selected document. We also propose all-
avg propagation, which takes the average over all neighbors’
dates, out-max, which takes the maximum over the out-
neighbors dates, and out-max-in-min, which is the middle
between in-min and out-max. The latter method is moti-
vated by the assumption that a page p is usually created
later than the pages pointed by p and earlier than the pages
which contain links to p. Finally, one more aggregation
method called model-q (q is a parameter, 0 ≤ q ≤ 1) is
discussed in Section 3.6.

We consider the seed and anchor date propagation not
necessarily as a one-step, but also as a multi-step process.
At each step, we consider all pages which have at least one
already dated neighbor, i.e., a neighbor with an anchor date,
a seed date, or a date assigned at the previous steps of
the propagation process. For these pages we approximate
their publication dates by taking a function of the dates of
their neighbors (we consider both incoming and outgoing

125



links). Note that, at the first propagation step, as in [14,
16], we take a function of anchor and seed dates (obtained
at Stage 1), while, at the next steps, we take a function of
only the dates that had been obtained by the propagation at
the previous steps. We continue this procedure until we can-
not date more pages. Note that after applying any method
or combination of methods from Sections 3.2 and 3.3 we may
have pages that are not dated. In this case we set their dates
to a predefined constant value (see Section 5.1).

3.4 Model description
In addition to the previously described propagation meth-

ods, we also propose a more sophisticated link-based ap-
proach which is motivated by the realistic probabilistic model
of the Web [10]. The general approach from [10] models the
behavior (in terms of links creation) of pages that may be-
long to different hosts. In this paper we mostly work with
intra-site links, therefore here we describe the model with
only one host1. If one needs to apply the method for many
hosts and inter-links, it is just necessary to regard all hosts as
one host in this case (and we do this for one of our datasets).
Our model differs from the model [10] in several respects and
further in this section we describe these differences and the
reasons for them.

The model under consideration has several parameters.
For each page p, we have the number of outgoing links mp,
its intrinsic quality qp, and the publication time tp. Besides
these page-specific parameters, we also have the rate of at-
tractiveness decay λ, an auxiliary constant c (c > λ), and
the number of pages n. Note that the parameters n and mp

are completely defined by the link structure of the host. On
the contrary, the parameters tp (for pages without anchor
dates), qp, λ, and c are hidden, and will therefore be tuned
during the optimization procedure (see Section 3.5).

The model can be described as follows. At the beginning
we have n pages and no links between them. Each page p
has its publication time tp. Then, for each page p we gen-
erate mp outgoing links. All links are modeled as mutually
independent random variables that determine their target
pages. The probability of a page r to be chosen as a target
page for a link from a page p is proportional to the relative
attractiveness of r according to p, which is a function of qr
(intrinsic quality of r) and the age difference ap,r for the
pages p and r, that is, tp − tr. Note that in the model the
difference ap,r can be negative, i.e., there is a possibility of
an edge between p and r with tp < tr. In a real web graph
such a link can be added at a moment t > tr if p was up-
dated at t. The attractiveness function is defined as follows:

attr(qr, ap,r) =

{
qr · e−λap,r ·

(
1− e−cap,r

2

)
if ap,r ≥ 0 ,

qr · e−λap,r · e
cap,r

2
if ap,r < 0 .

(1)
Let us discuss the case of ap,r ≥ 0. First of all, the at-
tractiveness of r is proportional to its quality. Second, the
attractiveness decreases with the age of r, i.e., older pages
are less popular. These two multipliers are proposed and
motivated in [10]. The third multiplier is explained further
in this section. In the case of ap,r < 0, as we also discuss

1Although inter-site links can be successfully used in some
applications, for example when a website mainly links to
other websites rather than to its own pages, in our dateset
(see Section 4.1) there are less than 1% of links which are
inter-site (including those pointing outside the dataset).

further, the probability of a link is small and decreases ex-
ponentially with ap,r.

We use this model in order to estimate the publication
dates of web documents. Namely, we are given an oriented
graph (nodes are the web documents and edges are the links
between them) and we assume that this graph is constructed
according to the procedure described above. We are given
the observed values of some parameters (the numbers of out-
going links mp and some anchor publication dates tp) and
want to find the rest of the unknown values to maximize
the probability that the observed graph is constructed un-
der the described model. The parameters with unknown
values are: the rate of attractiveness decay λ, the constant
c, the qualities of all pages qp, the publication times for non-
anchor pages tp. The detailed description of our method of
likelihood maximization is given in Section 3.5.

As we discussed earlier, the model we use in this paper
slightly differs from the model described in [10]. The differ-
ences are the following.
• The number of outgoing links for each page is not a

random variable, but a fixed number. We assume this
since we know the number of outgoing links for each
page from the real data.
• Pages appear at specific times tp, which are not set ran-

domly according to a Poisson process. In other words,
in our case, tp are the model parameters, this allows us
to use a maximum-likelihood estimation method and
estimate tp from the real data. For the same reason,
qp are not random variables but parameters, also to be
estimated from the real data.
• We change the attractiveness function a little. In [10]

the attractiveness function is defined as attr(qr, ap,r) =
qr · e−λap,r · I(ap,r > 0). As a result, edges going from
older pages to newer ones are prohibited in [10]. We
replace the indicator I(x > 0) (the Heaviside step func-
tion) by the following sigmoid function:

f(x) =

{
1− e−cx

2
for x ≥ 0 ,

ecx

2
for x < 0 .

(2)

Sigmoid functions are often used to smooth the step
function. The larger the value c in (2), the closer the
sigmoid function to the step function.

The latter modification helps us solve the following two
problems.

1. In the original model [10], the probabilities of edges
are not differentiable. On the other hand, our method
of finding the optimum parameters requires continu-
ously differentiable probabilities and here the sigmoid
function helps.

2. Although, it was shown in [10] that in real data al-
most all links go from newer pages to older ones, there
are always some edges which go conversely (e.g., a
page can be updated and a link to some newer page
can be added). In this case, according to the original
model [10], the probabilities of some edges are equal to
0 and, regardless of the tuning of all the parameters,
the probability of getting the observed graph is equal
to 0. Therefore, we would not be able to find the opti-
mum parameters in this case. We avoid this problem
by using a sigmoid function, so that in our case this
probability is always greater than 0.

Note that the above-mentioned problems can be solved
by using any sigmoid function, for example, the well-known
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logistic function. We choose the sigmoid function f(x) de-
fined in Equation (2) since it allows us to find the optimal
parameters with an algorithm of lower complexity (see Ap-
pendix for details). We require c > λ since we want to have
attr(r) → 0 as ap,r → −∞, i.e., we want the probabilities
of edges which go from older pages to newer ones to be ex-
ponentially small. We do this since usually in real networks
almost all links go from newer pages to older ones [10].

3.5 Likelihood optimization
Now we present our optimization algorithm which is based

on the model described above. For each host, the algorithm
consists of the following steps.

1. Fix c and λ.
2. Find initial approximations of ti, and qi for all pages.
3. Take several optimization steps for improving the ini-

tial estimates of ti and qi. While the estimates of qi
are improved for all pages, we do not change ti for the
pages with the anchor dates.

4. Select the appropriate stopping time.
Initial approximations. First, we fix c and λ. We

choose the optimal values for each host according to the
data-driven parameter selection method (see Section 3.7).

Then, we find the initial approximations of ti, and qi (for
all pages i). Several methods of choosing the initial approx-
imations of publication dates are described in Sections 3.3
and 3.6, namely, anchor dates, seed dates, propagated dates,
and constant dates. Recall that anchor dates are reliable and
we do not change them, while other dates can be corrected.

It was shown in [10] that a good model for the real data
can be obtained if (1) the attractiveness of a page is pro-
portional to its quality and decreases exponentially with its
age, (2) the quality of a page is proportional to the number
of its incoming links. Based on this observation, initially, we
consider the quality qi of a page i to be equal to the number
of incoming links to this page.

Optimization steps. This is the most important part
of the likelihood optimization algorithm. Recall that our
primary goal is to improve the initial publication dates for
the web pages without anchor dates. Since we assume that
the model described in Section 3.4 is realistic, we want to
find the values of the parameters which maximize the prob-
ability that a random graph Gmodel constructed according
to the model coincides with the link graph Greal observed
in the reality. We want to maximize the likelihood, that is
(disregarding the constant multiplier

∏
pmp!)

L(t̄, q̄) =
∏

ij∈Greal

P(ij ∈ Gmodel) . (3)

By i and j we denote nodes of a graph and the notation
ij ∈ G means that the oriented edge from i to j belongs to
the graph G. Further in the paper we assume that the nodes
are ordered according to their publication times, i.e., i ≤ j
if and only if ti ≤ tj . Edges are generated independently,
therefore we can just consider their product in Equation (3).
According to the model, the likelihood function L(t̄, q̄) is the
following:

L(t̄, q̄) =
∏

ij∈Greal,i≥j

qje
−λ(ti−tj)

(
1− e

−c(ti−tj)

2

)
W (ti)

·

·
∏

ij∈Greal,i<j

qje
−λ(ti−tj) e

c(ti−tj)

2

W (ti)
,

where W (ti) is the total weight of all pages at time ti:

W (ti) =
∑
j≤i

qje
−λ(ti−tj)

(
1− e−c(ti−tj)

2

)
+

+
∑
j>i

qje
−λ(ti−tj) e

c(ti−tj)

2
. (4)

The weight W (ti) appears in the denominator since we have
to normalize attractiveness in order to obtain a probability.

The idea of the optimization algorithm is the following.
For each page p (without an anchor date) we want to im-
prove our guess about its publication time tp. It means that
we want to find tp and qp that maximize L(tp, qp) in the
two-dimensional space. Our method of finding all such opti-
mal points simultaneously is based on the gradient descent
method2. This method requires the computation of all par-
tial derivatives of the function logL(t̄, q̄) with respect to ti
and qi. These derivatives we compute in Appendix. For each
page p we make one step in the quality dimension (in the
right direction according to the corresponding derivative, see
Equation (6)). And for all pages without the anchor dates
we make one step in the time dimension (see Equation (5)).
At each step we change quality and time by ±1 (i.e., one
day for the time dimension and one unit for the quality di-
mension). In Appendix, we describe an efficient algorithm
for computing all the derivatives in linear time. Finally,
the complexity of the likelihood optimization algorithm is
O (N e), where e is the number of edges and N is the num-
ber of optimization steps. Note that the complexity of one
step of any date propagation method is O(e).

Stopping criteria. From the beginning, we suspected
that our optimization algorithm works better for some hosts,
while for others it can be less useful. We apply a data-driven
parameter selection algorithm (see Section 3.7) in order to
find the optimal number of steps of the optimization proce-
dure for each host and, in particular, to decide whether we
should use this optimization for this host or not.

3.6 Simplification of likelihood optimization
In this section, we answer the following question: is there

any similarity between the date propagation strategies and
the likelihood optimization? In particular, we show that the
likelihood optimization algorithm (implicitly and approxi-
mately) uses an aggregation function. At the end of this sec-
tion, we propose new aggregation functions which are based
on the probabilistic model described above.

It was shown in [10] that W (ti) is asymptotically a con-
stant. So, we can replace W (ti) in the likelihood function
L(t̄, q̄) by a constant W . Because of this approximation,
the qualities of individual pages become just multipliers in
the likelihood function L(t̄, q̄), so we further assume qi = 1
for all i. These assumptions substantially simplify all the
above reasonings (see Section 3.5). Let us now try to find
the optimal date for a page p given the dates of all its neigh-
bors. The function we want to maximize depends only on
the probabilities of incoming and outgoing links for p:∏

pi∈Greal

P(pi ∈ Gmodel) ·
∏

jp∈Greal

P(jp ∈ Gmodel)

=
∏

pi∈Greal

e−λ(tp−ti)f(tp − ti)
W

·
∏

jp∈Greal

e−λ(tj−tp)f(tj − tp)
W

.

2http://en.wikipedia.org/wiki/Gradient descent
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Now, if we take a logarithm of this function and approximate
f(x) by

f̃(x) =

{
1 for x ≥ 0 ,
ecx

2
for x < 0 ,

then the function we have to maximize is

F (tp) = −λ
∑

pi∈Greal

(tp − ti)− λ
∑

jp∈Greal

(tj − tp)

+c
∑

pi∈Greal,tp<ti

(tp − ti) + c
∑

jp∈Greal,tj<tp

(tj − tp) .

Let us find the solution to this maximization problem. Let
degin(p) be the number of incoming links to p, degout(p) be
the number of outgoing links from p, and deg(p) = degin(p)+
degout(p) be the total number of links. Consider all neigh-
bors of p (both incoming and outgoing) and sort their pub-
lication times: T1 ≤ . . . ≤ Tdeg(p). Clearly, F (tp) is contin-
uous on (−∞; +∞) and differentiable on (−∞; +∞) except
at the points Ti, 1 ≤ i ≤ deg(p). The derivative F ′(tp) is
equal to

F ′(tp) = λ(degin(p)− degout(p))

+c (|{pi ∈ Greal, tp < ti}| − |{jp ∈ Greal, tj < tp}|) .

Therefore, argmax(F (tp)) = Tk, where

k = ddegout(p)−
λ

c
(degout(p)− degin(p))e .

However, if the value degout(p) − λ
c
(degout(p) − degin(p))

is integer, then F ′(tp) = 0 on the interval [Tk;Tk+1], and
argmax(F (tp)) is the whole interval [Tk;Tk+1], so, in this

case, we choose tp =
Tk+Tk+1

2
.

Interestingly, the solution to this simplified problem de-
pends only on the ratio λ/c, not on both of them. We denote
this ratio by q, 0 ≤ q ≤ 1. Note that if c = 2λ (q = 0.5),
then the optimal tp is the median of its neighbors’ dates.

The obtained result gives us a group of date propagation
methods which we call model-q propagation, 0 ≤ q ≤ 1. We
use the obtained aggregation function with the multi-step
propagation principle. The optimal q can be chosen by the
data-driven parameter selection method, described in the
next section.

3.7 Data-driven parameter selection
Our motivation for this approach is that different hosts

obviously have different properties, therefore different meth-
ods/parameters can be optimal for them. We propose a
data-driven parameter selection method in order to answer
three questions:
• How many steps of the likelihood optimization should

be applied?
• Which λ and c are optimal?
• Which date propagation method is the best for a host?

In order to find the best parameters we do the follow-
ing. We take all host’s pages with anchor dates and divide
them into 5 equal disjoint subsets (buckets). Then, for each
bucket B, we “forget” all anchor dates for the pages from
this bucket. After this, we apply the set of algorithms we
want to compare and measure the mean absolute error on
pages in B (we compare the estimated dates with the actual
anchor dates). Then we average the errors over all 5 buckets
and choose the best combination of parameters, i.e., the one
which gives the minimum average error.

4. DATA
In order to measure the performance of our algorithms

we use two different datasets. The first dataset is a large
sample of the web pages crawled by Yandex over a period of
17 months. Another dataset is the publicly available Meme-
Tracker dataset [1].

4.1 Crawled dataset
Data sources. In this section, we describe the data

sources we use in order to obtain the first dataset.
The first data source is the collection of documents crawled

by Yandex. For each crawled page p we know the date
when it was crawled tcrawlp , the page’s text, and its outgoing
links. The second data source is the logs of Yandex.Metrica
(https://metrica.yandex.com/) — a special tool for a site
owner which allows to analyze user activity on the site (this
tool is distributed by Yandex and is similar to, e.g., Google
Analytics). In these logs, all anonymized user visits to the
web pages of sites with the tool installed are recorded.

For our experiments we need both data sources. Further
on we explain how we use them in order to get the ground
truth dates.

Dataset. First, we sampled 10 random hosts Hi from
one week (in December 2012) logs of Yandex.Metrica. We
consider the set of all pages Pi on the host Hi which were
crawled by the search engine during the period from Jan-
uary 2013 to May 2014. This dataset (D1) is used for our
preliminary experiments (see Section 5.1).

We also collected the additional data for 60 random hosts
sampled in the same way. We use this dataset (D2) for the
final validation of our algorithms on the crawled data.

Overall, our crawled dataset consists of 4M pages from
70 hosts, the smallest host is of size 5K pages, the largest
one is of size 1.2M pages. For each page p in the dataset
we collected the following data: URL, document’s text, the
time of the first crawl tcrawlp , outgoing links, and the first

user visit recorded in the logs of Yandex.Metrica tvisitp .
Ground truth dates. In order to compare our algo-

rithm with the baseline strategies, we need to obtain the
true publication dates for a set of web pages. It is a typical
problem for link-based methods and methods based on lan-
guage models. If some pages have real publication dates in
their URL or HTML body, then some sample can be manu-
ally annotated. If there is no publication date anywhere on
a web page, then it is impossible to even manually annotate
a date. However, in this paper we mostly focus on the web
pages without explicit dates in their body. Therefore, we
have to somehow determine the actual publication dates for
many such web pages somehow.

In order to determine dates we use two sources of infor-
mation: the date tcrawlp when a page p was first crawled by

the search engine and the date tvisitp when p was first visited

by a user. The dates tcrawlp and tvisitp may coincide with the
date of creation or they may be later. Finally, we use the
following approximation of the ground truth: if for a page
p we have |tcrawlp − tvisitp | ≤ 24 hours, then this page is cre-

ated at tcrediblep = min{tcrawlp , tvisitp }. We choose a 24 hours
threshold since we measure error in days in this paper. Only
93K pages (∼3%) in our dataset D1 have tcrediblep time.

Admittedly, tcrediblep is not 100% correct publication date,
but we argue that this is the best approximation that a
search engine can get for such pages. In order to verify the
quality of the obtained dataset we take a random sample of
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1K pages (100 per host for dataset D1) which have tcrediblep

times and manually annotate dates for them. There are
three possible situations for each such page:
• If the publication date can be found in the text of a

document and it coincides with tcrediblep date, then we

say that tcrediblep is correct.
• If the publication date can be found in the text of a

document and it differs from tcrediblep date, then we say

that tcrediblep is incorrect.
• If the publication date cannot be found in the text of

a document, then we cannot say anything about the
correctness of tcrediblep .

We get the following result. Out of 1K manually annotated
dates only 19 have incorrect seed dates. On the other hand,
398 pages have no publication dates in their texts or URLs.
These pages are not uniformly distributed over the hosts,
namely, there are 3 hosts where almost all pages have un-
known dates. This means that any method which extracts
dates from the text is useless for such hosts. Remaining
583 pages have publication dates in their texts or URLs and
these dates coincide with tcrediblep date. Based on the above
observations, further we validate all the algorithms on pages
with tcrediblep date.

4.2 Memetracker dataset
We also use MemeTracker public dataset [1], which covers

about 96M blog posts and news articles published during 9
months from August, 2008 to April, 2009, and 418M links
between them. See [12] for the details on how this data
was collected. Our primary reason for using this additional
dataset is to put aside the problem of date extraction from
the page’s text and to focus on the main problem — link-
based date estimation. The pages in this dataset have pub-
lication timestamps. For our experiments we kept only links
pointing to the documents also in the dataset, i.e., links with
known timestamps both for the source and the destination.
We finally obtained a dataset of about 29M links and 12M
documents that we use in the following experiments. Since
we know the time when each document was posted on the
Web, in this dateset we have the ground truth dates for all
the pages. For this dataset we do not analyze date extrac-
tion algorithms and focus only on link-based methods.

Our dataset consists of the pages belonging to about 250K
different hosts. This means that a lot of hosts are repre-
sented by a very small number of pages: e.g., about 65K
hosts are represented by only one page. Therefore, analyz-
ing the hosts individually will not be effective. Further, we
treat MemeTracker dataset as one host.

5. EXPERIMENTS
In this section, we compare several algorithms of publi-

cation dates estimation. All algorithms assign publication
dates to all the pages in a dataset and then we compare their
precision. As the measures of precision we use the mean
absolute error, the median of the absolute errors, which is
more resistant to outliers, and the mean weighted absolute

error :
∑
p
degin(p)·AbsErr(p)∑

i degin(i)
, i.e., for each page p the error

AbsErr(p) is weighted by the normalized number of incom-
ing links degin(p). The latter measure reflects how precisely
we can estimate dates for more important pages. All metrics
are measured in days.

We compare the following algorithms. First, we consider
the 1-step propagation algorithms: 1-step in-avg, 1-step out-

Location mean / median /
weighted err.

coverage (by
non-constant)

Constant date 124 / 113 / 159 0%
+ URL 95.5 / 94.2 / 145 19.6%
+ before main content 87.3 / 92.1 / 103 20.1%
+ title 80.0 / 76.3 / 95.7 20.6%
+ after main content 79.1 / 75.4 / 95.2 20.8%
+ main content 78.8 / 74.0 / 87.7 21.3%
+ other 59.1 / 35.2 / 72.7 47.2%

Table 1: Errors for different seed dates on D1

avg, 1-step all-avg, 1-step in-min, 1-step out-max, 1-step out-
max-in-min (see Section 3.3). Note that our baselines are
1-step in-avg, 1-step out-avg from [14], and 1-step in-min
from [16]. Second, we consider the multi-step propagation
algorithms: in-avg, out-avg, all-avg, in-min, out-max, out-
max-in-min, model-q (the last one is defined in Section 3.6).
Finally, we consider the likelihood optimization algorithm
(see Section 3.5).

5.1 Experiments on crawled dataset D1

In this section, we analyze the reliability of dates extracted
from different parts of a document (see Section 3.2). Based
on the results of these experiments, we choose seed dates for
our optimization algorithm. All the experiments here are
performed on dataset D1.

We consider all pages in dataset D1 and the dates ex-
tracted from their URLs and HTML bodies. First, we mea-
sure the precision of each location separately in order to find
the most reliable locations. We noticed that the most reli-
able location is URL (the mean absolute error is 1.0 day)
followed by before main content location (4.3 days) and title
(4.8 days). If a date was found in one of these three locations
on the page, then we say that this page has an anchor date
(see Section 3.1). The other locations are less reliable: after
main content (34 days), main content (74 days), other (88
days). If a date was found in one of these three locations,
then we say that this date is the seed date. Finally, about
a half of the pages in dataset D1 have dates in their texts
(i.e., they have a seed or an anchor date assigned) and 20%
of the pages have an anchor date.

Now we want to compare several strategies which assign
dates to all web pages based only on their URLs and HTML
bodies. The first very basic strategy assigns constant dates
to all web pages. As expected, the best constant date is the
middle of the considered time interval, i.e., the middle of
September, 2013. If we assigned this date to all the pages
in our dataset, then the mean absolute error would be equal
to 124 days (see Table 1)3. Then, we order the locations
according to their mean errors and analyze different combi-
nations of locations. First, we add the dates found in URLs,
i.e., if a document has a date in its URL, then we assign this
date, otherwise we assign the constant date. We further add
more and more locations and measure the mean, the median
and the mean weighted absolute errors (see Table 1). The
last column in this table shows the fraction of non-constant
dates for a given combination of locations. However recall
that we average errors over all web pages.

3In practice, we may not have any“considered time interval”,
especially if a search engine comes to a new market. In these
cases, a practitioner may choose to assign no date instead of
a constant date or assign the date to be the date of the first
crawl. We use the constant dates in order to fairly compare
the precision of all algorithms given the full coverage.
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Method mean/median/
weighted err

coverage

b
a
se

li
n

es seed and anchor dates 57.1/30.2/70.0 47.7%
1-step in-avg 55.9/29.8/56.9 49.3%
1-step out-avg 56.3/27.6/68.2 64.1%
1-step in-min 58.0/29.8/66.0 49.3%

p
ro

p
o
se

d
m

et
h

o
d
s

1-step all-avg 55.5/27.7/57.0 64.4%
1-step out-max 56.9/28.1/67.5 64.1%
1-step out-max-in-min 56.7/30.3/70.0 49.0%
in-avg 55.5/29.7/56.5 49.7%
out-avg 58.0/25.0/70.1 68.6%
all-avg 52.4/22.3/55.6 69.7%
in-min 57.8/29.7/65.8 49.7%
out-max 57.1/22.3/72.7 68.6%
out-max-in-min 56.6/30.0/70.2 49.4%
model-0.5 51.9/19.7/53.9 69.7%
model-0.6 51.2/19.7/53.6 69.7%
model-0.7 51.4/19.5/53.7 69.7%
likelihood optimization 49.9/19.1/51.2 69.7%

Table 2: Comparison of the algorithms on D2

5.2 Experiments on crawled dataset D2

In this section, we analyze the performance of our meth-
ods and compare them with the baseline approaches on
dataset D2.

Date propagation. We analyze and compare differ-
ent date propagation methods. First, we extract seed and
anchor dates as described in the previous section. Then,
we compare several date propagation functions (see Sec-
tions 3.3 and 3.6). The results of this comparison are pre-
sented in Table 2. We compared several values of q in model-
q propagation (q = 0.0, 0.1 . . . , 1.0) on dataset D1 also. The
best results were obtained with q = 0.6. In Table 2 we
present the results for q ∈ {0.5, 0.6, 0.7} on dataset D2.
Note that the optimal value for each host can be tuned by
our data-driven parameter selection method. In Table 2,
we are mostly interested in the second column, which shows
the mean/median/weighted errors measured on all pages.
Model-q propagation shows the best results according to
all metrics. Note that we set constant dates to the pages
which are not dated, so the third column demonstrates the
coverage of the dating method (i.e., the fraction of non-
constant dates after the dating procedure) and the second
column shows the average errors over all pages, including
those which were assigned with the constant date. Usually,
the multi-step propagation has a smaller error than one-step
propagation because of the higher coverage.

We also applied our data-driven parameter selection ap-
proach in order to choose the best propagation strategy for
each host. This allowed us to improve the mean absolute
error up to 50.5 days, although, median absolute error and
mean weighted absolute error slightly increased to 19.9 and
54.0 respectively. Note that the parameter selection method
minimizes mean absolute error, so there is no guarantee that
any other measures will improve (if one were to consider an-
other measure as the most important, that measure should
be used as the target of minimization).

Likelihood optimization. First, for each host we choose
the best method among all propagation methods with our
data-driven parameter selection approach. The dates ob-
tained by this propagation are used as initial dates for the
likelihood optimization. Second, we use the parameter se-
lection method to find out if the likelihood method is better
(according to the mean absolute error) with any settings
of its parameters (we fix the maximum number of steps
N = 100). We noticed that our data-driven parameter se-

Method mean/median/
weighted err

coverage

b
a
se

li
n

es anchor dates 77.6/79.7/89.6 50.0%
1-step in-avg 71.0/73.3/39.7 57.9%
1-step out-avg 66.8/66.6/41.7 65.5%
1-step in-min 71.5/73.6/77.8 57.9%

p
ro

p
o
se

d
m

et
h

o
d
s

1-step all-avg 64.1/62.3/38.6 68.6%
1-step out-max 67.4/67.0/50.0 65.5%
1-step out-max-in-min 73.5/75.8/58.0 54.8%
in-avg 70.2/72.5/39.0 58.9%
out-avg 64.5/62.4/39.6 69.0%
in-min 70.9/73.0/77.2 58.9%
all-avg 58.0/52.6/37.9 75.3%
out-max 65.5/63.1/48.1 69.0%
out-max-in-min 72.7/75.2/56.3 55.8%
model-0.3 58.3/52.3/43.0 75.3%
model-0.4 58.0/52.0/38.1 75.3%
model-0.5 58.2/52.2/35.7 75.3%
likelihood optimization 57.4/51.3/33.4 75.3%

Table 3: Comparison of the algorithms on MemeTracker

lection approach chooses zero number of steps to about 40%
of hosts, which means that for other 60% the likelihood op-
timization is predicted to be useful with some values λ, c,
N0 > 0. Likelihood optimization allowed us to get better
results according to all measures. Finally, we get 11%, 31%,
and 10% improvements of mean, median, and weighted er-
rors respectively over the best (according to the correspond-
ing metric) of the baselines.

Note that, for instance, in the case of web search rank-
ing [4], even small improvements in the publication date
estimates may affect the quality of ranking. Since the qual-
ity is of the highest priority in such applications (used by
hundreds of millions of people daily), it should be preferred
to periodically apply the best method, i.e., the likelihood
optimization. For some other applications, where the com-
plexity can be an issue, it might be preferred to use our
multi-step date propagation methods of lower complexity,
which demonstrate slightly worse but still sufficiently good
results (see Appendix for the discussion of complexity).

5.3 Experiments on MemeTracker
Recall that this dataset consists of about 12 million web

pages with known dates. In order to measure the perfor-
mance of the algorithms we take x% random web pages and
“forget” their dates. We consider all dates that are left as
anchor ones. Then, we find initial approximations for the
forgotten dates by using the date propagation methods. Af-
ter that, we apply the likelihood optimization procedure.
In this section, we measure the average errors only using
the pages with forgotten dates. Mean errors measured over
all pages would be two times smaller (since half of the pages
have zero errors). We take 15th of December as the constant
date since it is the middle of the considered time interval.

The results for x = 50% are presented in Table 3. The
value x = 50% is chosen according to our observations on
the crawled dataset, where we observe that about half of the
pages have no seed or anchor dates (see the coverage for seed
dates in Table 2). We applied our data-driven parameter
selection algorithm to choose the propagation method and
it chose model-0.4. Then, we apply the likelihood optimiza-
tion algorithm. The data-driven parameter selection method
predicts the likelihood optimization to be useful in this case
(with 80 steps). Note that the obtained likelihood optimiza-
tion algorithm is the best according to all three measures.
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Figure 1: Influence of sparsity in data: mean absolute error

Performance on reachable pages only. Recall that
we average errors over all web pages with forgotten dates,
although about a half of these pages do not have any date
even after the multi-step date propagation; these pages are
assigned the constant date and all link-based methods are
useless for such pages (they are not connected by any path
to any dated page). If we exclude these pages from the eval-
uation and measure the error on the remaining pages, then
we obtain more distinguishable results: e.g., the mean error
of the best baseline 1-step out-avg is 56.3 days, of model-0.4
is 38.9 days (-31%), of the likelihood optimization is 37.7
days (-33%). On the crawled dataset we can make similar
observations.

Dataset size influence. In addition, we analyze the in-
fluence of the dataset size on the quality of our algorithms.
In order to do this, we thin out the data: we progressively
remove a bigger fraction of web pages, and then, as before,
we assume that for the half of the remaining pages the dates
are not known and we estimate these dates with our meth-
ods. The obtained mean absolute error is shown on Figure 1.
Here we present the following methods: the best of the base-
lines 1-step out-avg, the best one-step method 1-step avg,
the best multi-step method model-0.4, and the likelihood
optimization method. As expected, a sparser link struc-
ture leads to worse performance of the algorithms. We also
demonstrate that it is possible to improve the weighted er-
ror measure much more if our parameter selection approach
directly optimizes this measure. Figure 2 is analogous to
Figure 1, but it presents the mean weighted error for all
the algorithms. Here the best baseline is 1-step in-avg and
the best multi-step algorithm is model-0.8. The parameters
of the likelihood optimization algorithm are chosen accord-
ing to the data-driven parameter selection approach which
optimizes the mean weighted error. It turns out that the
weighted error is much less sensitive to the sparsity in data
than the mean absolute error.

Finally, it is worth mentioning that all the improvements
obtained on both datasets are statistically significant accord-
ing to the paired t-test at less than 0.001 level.

6. CONCLUSION AND FUTURE WORK
In this paper, we suggested and compared several methods

for publication dates estimation. We primarily focused on
link-based methods: we systematized and generalized sev-
eral simple date propagation methods previously proposed
in the literature and we also suggested a more sophisticated
likelihood optimization based method. In addition, we pro-
posed the data-driven parameter selection approach which
allows to tune our algorithms individually for each host.
We demonstrated the improvements over the baseline ap-
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Figure 2: Influence of sparsity in data: mean weighted error

proaches on two large Web samples: the first one consists of
pages crawled by a major commercial search engine and the
second one is MemeTracker public dataset. For example, the
mean error is improved by 10% and 14% on the crawled and
MemeTracker datasets respectively. If we exclude isolated
pages from the evaluation, we get up to 33% improvements.

The most promising direction for the future research is
to deeper analyze the hosts for which the likelihood opti-
mization is predicted not to be useful. The link structure
can evolve by some other rules in such cases, therefore it is
reasonable to develop and apply a more suitable model for
these hosts.
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APPENDIX
Complexity reduction. Let us discuss the complexity of
the likelihood optimization algorithm which optimizes qp for
all pages and tp for all pages without anchor dates. Let n
and e be the number of nodes and the number of edges
in the graph Greal, respectively. The näıve straightforward
method allows to compute W (ti) for all i in O(n2). After
this, L(t̄, q̄) can be computed inO(n2+ne). If we want to use
the gradient descent method for each node, then one step of
the gradient descent for only one node can be made inO(n2+
ne). Making one optimization step for all nodes would take
O(n3 +n2e). Since we have hundreds of thousands pages on
one host, this complexity is far too high. That is why we
propose an efficient method which allows to simultaneously
optimize qualities and dates for all pages and allows to make
one optimization step for all pages with O(n+e) complexity.

We assume that nodes are sorted according to the current
estimates of their publication times, i.e., t1 ≤ . . . ≤ tn.
First, we compute W (ti) for all i in O(n):

W (ti) =
∑
j≤i

qje
−λ(ti−tj)

(
1− e−c(ti−tj)

2

)

+
∑
j>i

qje
−λ(ti−tj) e

c(ti−tj)

2
= e−λti

∑
j≤i

qje
λtj

− e−(λ+c)ti

2

∑
j≤i

qje
(λ+c)tj +

e(c−λ)ti

2

∑
j>i

qje
−(c−λ)tj .

We can precompute all partial sums in the last equality in
O(n). After that, the values W (ti) for all i can be computed
in O(n). And the value L(t̄, q̄) can be computed in O(n+e).

Now we can compute the partial derivatives of L(t̄, q̄) with
respect to ti for all i in O(n + e). Let us start with some
auxiliary observations

g(x) =
∂

∂x
f(x) =

{
ce−cx

2
for x ≥ 0 ,

cecx

2
for x < 0 ,

∂

∂tk
f(ti − tj) = (δik − δjk)g(ti − tj) ,

∂

∂tk
e−λ(ti−tj) = −λ(δik − δjk)e−λ(ti−tj) .

Recall that W (ti) =
∑
j qje

−λ(ti−tj)f(ti − tj) . Now we cal-

culate partial derivatives of W (ti) with respect to tk:

∂W (ti)

∂tk
=
∑
j

qje
−λ(ti−tj)(δik − δjk) (g(ti − tj) − λf(ti − tj))

= δik
∑
j

qje
−λ(ti−tj) (−λf(ti − tj) + g(ti − tj))

−
∑
j

qje
−λ(ti−tj)δjk (−λf(ti − tj) + g(ti − tj))

= δik (V (ti) − λW (ti)) − qke
−λ(ti−tk) (g(ti − tk) − λf(ti − tk))

= δik (−λW (ti) + V (ti)) − qkh(ti − tk) ,

where h(x) = e−λx (g(x)− λf(x)) and

V (ti) =
∑
j

qje
−λ(ti−tj)g(ti − tj) .

Similar to W (ti), all V (ti) can be computed in O(n).
Recall that

L(t̄, q̄) =
∏

ij∈Greal

qje
−λ(ti−tj)f(ti − tj)

W (ti)
.

Now we calculate

∂

∂tk
logL(t̄, q̄)

=
∂

∂tk

∑
ij∈Greal

(log qj − λ(ti − tj) + log f(ti − tj) − logW (ti))

=
∑

ij∈Greal

−λ(δik − δjk) +
∑

ij∈Greal

(δik − δjk)g(ti − tj)

f(ti − tj)

−
∑

ij∈Greal

δik (−λW (ti) + V (ti)) − qkh(ti − tk)

W (ti)

= −λ(degout(k) − degin(k)) +
∑

kj∈Greal

g(tk − tj)

f(tk − tj)

−
∑

ik∈Greal

g(ti − tk)

f(ti − tk)
−
(
degout(k) (−λW (tk) + V (tk))

W (tk)

)

+ qk
∑
i

degout(i)h(ti − tk)

W (ti)

= −
V (tk)

W (tk)
degout(k) + λ degin(k) +

∑
kj∈Greal

g(tk − tj)

f(tk − tj)

−
∑

ik∈Greal

g(ti − tk)

f(ti − tk)
+ qk

∑
i

degout(i)h(ti − tk)

W (ti)
. (5)

The first four terms in the last equation can be computed
in O(n+ e). It remains to compute

qk
∑
i

degout(i)h(ti − tk)

W (ti)
= qk

∑
i≥k

degout(i)h(ti − tk)

W (ti)

+qk
∑
i<k

degout(i)h(ti − tk)

W (ti)
= −λqkeλtk

∑
i≥k

degout(i)e
−λti

W (ti)

+
(λ+ c)qke

(λ+c)tk

2

∑
i≥k

degout(i)e
−(λ+c)ti

W (ti)

+
(c− λ)qke

(λ−c)tk

2

∑
i<k

degout(i)e
(c−λ)ti

W (ti)
.

This expression for all k can be computed in O(n).
The partial derivatives with respect to qk can be computed

in a similar way:

∂

∂qk
logL(t̄, q̄) =

degin(k)

qk
− eλtk

∑
i≥k

degout(i)e
−λti

W (ti)

− e(λ+c)tk

2

∑
i≥k

degout(i)e
−(λ+c)ti

W (ti)

− e(λ−c)tk

2

∑
i<k

degout(i)e
(c−λ)ti

W (ti)
. (6)

Finally, the complexity of the likelihood optimization al-
gorithm is O (N e), where N is the number of optimization
steps. Recall that the complexity of one step of any date
propagation method is O(e).

Note that during the computation of the partial deriva-
tives we have to calculate the sum of exponents eti several
times and a lot of such exponents are too large to fit the
double or long double types what makes the computation
infeasible. The solution to this problem is to operate with
the logarithms of numbers (see http://blog.smola.org/post/
987977550/log-probabilities-semirings-and-floating-point).
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